ADP2323
INDUCTOR SELECTION
Table 9. Recommended Inductors
Data Sheet
The inductor value is determined by the operating frequency,
input voltage, output voltage, and inductor ripple current. Using a
small inductor leads to a faster transient response but degrades
Vendor
Sumida
Part No.
CDRH105RNP-1R5N
Value
[μH]
1.5
I SAT
[A]
10.5
I RMS
[A]
8.3
DCR
[m?]
5.8
( V IN ? V OUT ) × D
V OUT
7447797300
3.0
10.5
7.0
18
K UV × ? I STE P 2 × L
2 × ( V IN ? V OUT ) × ? V OUT _ UV
I PEAK = I OUT +
K OV × ? I STEP 2 × L
( V OUT + ? V OUT _ OV ) 2 ? V OUT 2
I RMS = I OUT 2 +
C OUT _ RIPPLE =
efficiency due to larger inductor ripple current, whereas a large
inductor value leads to smaller ripple current and better effi-
ciency but results in a slower transient response. Thus, there is a
trade-off between the transient response and efficiency. As a
guideline, the inductor ripple current, ΔI L , is typically set to 1/3
of the maximum load current. The inductor value can be
calculated using the following equation:
L =
? I L × f SW
where:
V IN is the input voltage.
V OUT is the output voltage.
ΔI L is the inductor ripple current.
f SW is the switching frequency.
D is the duty cycle.
D =
V IN
The ADP2323 uses adaptive slope compensation in the current
loop to prevent subharmonic oscillations when the duty cycle is
larger than 50%. The internal slope compensation limits the
minimum inductor value.
For a duty cycle that is larger than 50%, the minimum inductor
value is determined by the following equation:
V OUT × ( 1 ? D )
2 × f SW
The inductor peak current is calculated using the following
equation:
? I L
2
The saturation current of the inductor must be larger than the
peak inductor current. For the ferrite core inductors with a
quick saturation characteristic, the saturation current rating of the
inductor should be higher than the current-limit threshold of the
switch to prevent the inductor from getting into saturation.
The rms current of the inductor can be calculated by the
following equation:
? I L 2
12
Shielded ferrite core materials are recommended for low core
loss and low EMI.
CDRH105RNP-2R2N 2.2 9.25 7.5 7.2
CDRH105RNP-3R3N 3.3 7.8 6.5 10.4
CDRH105RNP-4R7N 4.7 6.4 6.1 12.3
CDRH105RNP-6R8N 6.8 5.4 5.4 18
Coilcraft MSS1048-152NL 1.5 10.5 10.8 5.8
MSS1048-222NL 2.2 8.4 9.78 7.2
MSS1048-332NL 3.3 7.38 7.22 10.4
MSS1048-472NL 4.7 6.46 6.9 12.3
MSS1048-682NL 6.8 5.94 6.01 18
Wurth 7447797180 1.8 13.3 7.3 16
Elektronik
7447797470 4.7 8.0 5.8 27
7447797620 6.2 7.5 5.5 30
OUTPUT CAPACITOR SELECTION
The output capacitor selection affects both the output voltage
ripple and the loop dynamics of the regulator. For example,
during load step transient on the output, when the load is
suddenly increased, the output capacitor supplies the load until
the control loop has a chance to ramp up the inductor current,
which causes an undershoot of the output voltage.
Use the following equation to calculate the output capacitance that
is required to meet the voltage droop requirement:
C OUT _ UV =
where:
Δ I STEP is the load step.
Δ V OUT_UV is the allowable undershoot on the output voltage.
K UV is a factor, typically setting K UV = 2.
Another case is when a load is suddenly removed from the
output and the energy stored in the inductor rushes into the
output capacitor, which causes the output to overshoot. The
output capacitance required to meet the overshoot requirement
can be calculated using the following equation:
C OUT _ OV =
where:
Δ V OUT_OV is the allowable overshoot on the output voltage.
K OV is a factor, typically setting K OV = 2.
The output ripple is determined by the ESR of the output
capacitor and its capacitance value. Use the following equation to
select a capacitor that can meet the output ripple requirements:
? I L
8 × f SW × ? V OUT _ RIPPLE
Rev. A | Page 20 of 32
R ESR =
? V OUT _ RIPPLE
? I L
相关PDF资料
R1D12-1215-R CONV DC/DC 1W 12VIN +/-15VOUT
A9AAT-0308F FLEX CABLE - AFE03T/AF03/AFE03T
EBM11DSES CONN EDGECARD 22POS .156 EYELET
GBC07DREH-S93 CONN EDGECARD 14POS .100 EYELET
ESM06DRXN CONN EDGECARD 12POS DIP .156 SLD
SJ4575 1"X50YD RECLOS FASTEN DL LOC 1"X50YD BLK
A9CCA-0504E FLEX CABLE - AFK05A/AE05/AFK05A
A9AAT-1003E FLEX CABLE - AFH10T/AE10/AFH10T
相关代理商/技术参数
ADP2325 制造商:AD 制造商全称:Analog Devices 功能描述:Dual 5 A, 20 V Synchronous Step-Down
ADP2325ACPZ 制造商:Analog Devices 功能描述:BUCK DUAL 5A ADJ 32LFCSP 制造商:Analog Devices 功能描述:BUCK, DUAL, 5A, ADJ, 32LFCSP
ADP2325ACPZ-R7 功能描述:IC REG CTRLR BUCK PWM CM 32LFCSP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
ADP2325-BL1-EVZ 制造商:AD 制造商全称:Analog Devices 功能描述:Dual 5 A, 20 V Synchronous Step-Down
ADP2325-BL2-EVZ 制造商:AD 制造商全称:Analog Devices 功能描述:Dual 5 A, 20 V Synchronous Step-Down
ADP2325-EVALZ 制造商:Analog Devices 功能描述:EVAL DUAL 5A 20VHS MOSFETADP2325 制造商:Analog Devices 功能描述:ADP2325, STEP DOWN REG, EVAL BOARD 制造商:Analog Devices 功能描述:ADP2325, STEP DOWN REG, EVAL BOARD; Silicon Manufacturer:Analog Devices; Kit Application Type:Power Management; Application Sub Type:Step Down DC / DC Converter; Features:Evaluate the Performance of Regulators, Automatic PFM / PWM ;RoHS Compliant: Yes
ADP2360ACPZ-3.3-R7 功能描述:IC REG BCK 3.3V SYNC 8LFCSP 制造商:analog devices inc. 系列:- 包装:剪切带(CT) 零件状态:在售 功能:降压 输出配置:正 拓扑:降压 输出类型:固定 输出数:1 电压 - 输入(最小值):4.5V 电压 - 输入(最大值):60V 电压 - 输出(最小值/固定):3.3V 电压 - 输出(最大值):- 电流 - 输出:50mA 频率 - 开关:- 同步整流器:是 工作温度:-40°C ~ 125°C (TJ) 安装类型:表面贴装 封装/外壳:8-WDFN 裸露焊盘,CSP 供应商器件封装:8-LFCSP(3x3) 标准包装:1
ADP2360ACPZ-5.0-R7 功能描述:Buck Switching Regulator IC Positive Fixed 5V 1 Output 50mA 8-WDFN Exposed Pad 制造商:analog devices inc. 系列:- 包装:带卷(TR) 零件状态:有效 功能:降压 输出配置:正 拓扑:降压 输出类型:固定 输出数:1 电压 - 输入(最小值):4.5V 电压 - 输入(最大值):60V 电压 - 输出(最小值/固定):5V 电压 - 输出(最大值):- 电流 - 输出:50mA 频率 - 开关:- 同步整流器:是 工作温度:-40°C ~ 125°C (TJ) 安装类型:表面贴装 封装/外壳:8-WDFN 裸露焊盘 供应商器件封装:8-LFCSP(3x3) 标准包装:1,500